Libro de visitas

Importancia de las fibras ópticas en las telecomunicaciones

Fibra Óptica Y Telecomunicaciones | 20.11.2012

Un sistema de comunicaciones ópticas es una forma de transmitir información cuyo soporte básico es la luz. La información viaja en forma de luz a lo largo de dicho sistema. Las ondas de luz, al igual que las de radio, son una forma de radiación electromagnética. Es por ello que pueden usarse, al igual que se usan las ondas de radio para la transmisión de información. Esta idea surgió hace más de un siglo, pero no se pudo aplicar ya que no había fuentes de luz ni medios para transportarla adecuados. Hoy en día , en cambio, ya se sabe que la forma más eficiente de que la luz viaje desde un punto hasta otro es mediante la fibra óptica. En un principio fueron los militares los que idearon este sistema debido a las grandes ventajas que esto le reportaría.

https://mx.answers.yahoo.com/question/index?qid=20110528193058AAn6eaW

<< 1 | 2

Nuevo comentario

Novedades

Ventajas y Desventajas de las fibras opticas

22.11.2012 13:58

Componentes de las fibras opticas

22.11.2012 13:40
  Componentes de la fibra óptica   Dentro de los componentes que se usan en la fibra óptica caben destacar los siguientes: los conectores, el tipo de emisor del haz de luz, etc. Tipos De Conectores De La Fibra Óptica. Estos elementos se encargan de conectar las líneas de fibra...

Tipos de fibra optica

22.11.2012 13:21
Básicamente, existen dos tipos de fibra óptica: multimodo y monomodo. La fibra óptica multimodo es adecuada para distancias cortas, como por ejemplo redes LAN o sistemas de videovigilancia, mientras que la fibra óptica monomodo está diseñada para sistemas de comunicaciones ópticas de larga...

https://www.hebisa.com/Noticias/Noticias/LASER-FIBRA-OPTICA-ALTA-VELOCIDAD.html

20.11.2012 17:35
En esta pagina econtraran lo algunos avances que se an logrado con las fibras opticas entre otros proyectos que estan sacando esta ultima generacion

Aviso a los visitantes

01.11.2012 19:45
      Sensores de fibra óptica Las fibras ópticas se pueden utilizar como sensores para medir la tensión, la temperatura, la presión y otros parámetros. El tamaño pequeño y el hecho de que por ellas no circula corriente eléctrica le da ciertas ventajas respecto al sensor...

Nuevo Website

01.11.2012 19:44
hemos lanzado nuestro nuevo website con el fin de explicar a cada uno de ustedes la aplicacion de las fibras opticas, el metodo con el cual son creadas y la forma en que son aplicadas para brindar corriente electrica y darnos la oportunidad de interactuar con otros por medio de las redes de...
Fibra óptica Un ramo de fibras ópticas. Un cable de fibra óptica de TOSLINK para audio iluminado desde un extremo. La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED. Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio y superiores a las de cable convencional. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagnéticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.
Proceso de fabricación Artículo principal: Fabricación de la fibra óptica. Una vez obtenida mediante procesos químicos la materia de la fibra óptica, se pasa a su fabricación. Proceso continuo en el tiempo que básicamente se puede describir a través de tres etapas; la fabricación de la preforma, el estirado de esta y por último las pruebas y mediciones. Para la creación de la preforma existen cuatro procesos que son principalmente utilizados. La etapa de fabricación de la preforma puede ser a través de alguno de los siguientes métodos: M.C.V.D Modified Chemical Vapor Deposition Fue desarrollado originalmente por Corning Glass y modificado por los Laboratorios Bell Telephone para su uso industrial. Utiliza un tubo de cuarzo puro de donde se parte y es depositado en su interior la mezcla de dióxido de silicio y aditivos de dopado en forma de capas concéntricas. A continuación en el proceso industrial se instala el tubo en un torno giratorio. El tubo es calentado hasta alcanzar una temperatura comprendida entre 1.400 °C y 1.600 °C mediante un quemador de hidrógeno y oxígeno. Al girar el torno el quemador comienza a desplazarse a lo largo del tubo. Por un extremo del tubo se introducen los aditivos de dopado, parte fundamental del proceso, ya que de la proporción de estos aditivos dependerá el perfil final del índice de refracción del núcleo. La deposición de las sucesivas capas se obtienen de las sucesivas pasadas del quemador, mientras el torno gira; quedando de esta forma sintetizado el núcleo de la fibra óptica. La operación que resta es el colapso, se logra igualmente con el continuo desplazamiento del quemador, solo que ahora a una temperatura comprendida entre 1.700 °C y 1.800 °C. Precisamente es esta temperatura la que garantiza el ablandamiento del cuarzo, convirtiéndose así el tubo en el cilindro macizo que constituye la preforma. Las dimensiones de la preforma suelen ser de un metro de longitud útil y de un centímetro de diámetro exterior. V.A.D Vapor Axial Deposition Su funcionamiento se basa en la técnica desarrollada por la Nippon Telephone and Telegraph (N.T.T), muy utilizado en Japón por compañías dedicadas a la fabricación de fibras ópticas. La materia prima que utiliza es la misma que el método M.C.V.D, su diferencia con este radica, que en este último solamente se depositaba el núcleo, mientras que en este además del núcleo de la FO se deposita el revestimiento. Por esta razón debe cuidarse que en la zona de deposición axial o núcleo, se deposite más dióxido de germanio que en la periferia, lo que se logran a través de la introducción de los parámetros de diseño en el software que sirve de apoyo en el proceso de fabricación. A partir de un cilindro de vidrio auxiliar que sirve de soporte para la preforma, se inicia el proceso de creación de esta, depositándose ordenadamente los materiales, a partir del extremo del cilindro quedando así conformada la llamada "preforma porosa". Conforme su tasa de crecimiento se va desprendiendo del cilindro auxiliar de vidrio. El siguiente paso consiste en el colapsado, donde se somete la preforma porosa a una temperatura comprendida entre los 1.500 °C y 1.700 °C, lográndose así el reblandecimiento del cuarzo. Quedando convertida la preforma porosa hueca en su interior en el cilindro macizo y transparente, mediante el cual se suele describir la preforma. Comparado con el método anterior (M.C.V.D) tiene la ventaja de que permite obtener preformas con mayor diámetro y mayor longitud, a la vez que precisa un menor aporte energético. El inconveniente más destacado es la sofisticación del equipamiento necesario para su realización. O.V.D Outside Vapor Deposition Desarrollado por Corning Glass Work. Parte de una varilla de substrato cerámica y un quemador. En la llama del quemador son introducidos los cloruros vaporosos y esta caldea la varilla. A continuación se realiza el proceso denominado síntesis de la preforma, que consiste en el secado de la misma mediante cloro gaseoso y el correspondiente colapsado de forma análoga a los realizados con el método V.A.D, quedando así sintetizados el núcleo y revestimiento de la preforma. Entre las Ventajas, es de citar que las tasas de deposición que se alcanzan son del orden de , lo que representa una tasa de fabricación de FO de , habiendo sido eliminadas las pérdidas iniciales en el paso de estirado de la preforma. También es posible la fabricación de fibras de muy baja atenuación y de gran calidad mediante la optimización en el proceso de secado, porque los perfiles así obtenidos son lisos y sin estructura anular reconocible. P.C.V.D Plasma Chemical Vapor Deposition Es desarrollado por Philips, se caracteriza por la obtención de perfiles lisos sin estructura anular reconocible. Su principio se basa en la oxidación de los cloruros de silicio y germanio, creando en estos un estado de plasma, seguido del proceso de deposición interior.